Page last updated Wed 05 Feb 2020


Image from Identification and Ecology of Australian Freshwater Invertebrates.

Use the links to navigate the hierarchy of invertebrate classification.

  Family Tetrastemmatidae

Genus Prostoma

    Species P. graecense -- Wisconsin!
    Species P. asensoriatum -- North America.
    Species P. canadiensis -- North America.
    Species P. eilhardi -- North America.
    Species P. armatum
    Species P. cisalpinum
    Species P. communopore
    Species P. coronatum
    Species P. giardii
    Species P. hercegovinense
    Species P. jenningsi
    Species P. kolasai
    Species P. macradenum
    Species P. maculatum
    Species P. ohmiense
    Species P. puteale
    Species P. steenstrupii
    Species P. stigmatum

Taxon Information

The Genus Prostoma has been reported (or is assumed) to occur in fresh waters. This taxon has been reported from Wisconsin.

(These statements were generated automatically from the WInvertebrates database.)

Literature Records

  • Prostoma, (Sundberg & Gibson, 2008).
  • Prostoma, (Watermolen, 2005).
  • Prostoma, worldwide [North America] (Smith, 2001).
  • Prostoma, [Wisconsin] (Browning, 1972).
  • Prostoma, (Coe, 1959).


  • Sundberg, P. & R. Gibson. 2008. Global diversity of nemerteans (Nemertea) in freshwater. Hydrobiologia 595: 61-66. [Available online]
  • Watermolen, D.J. 2005. Aquatic and terrestrial flatworm (Platyhelminthes, Turbellaria) and ribbon worm (Nemertea) records from Wisconsin. Research/Management Findings, Wisconsin DNR (55). 8 pp.
  • Smith, D.G. 2001. Nemertea (Proboscis worms). Pennak's Freshwater Invertebrates of the United States, 4th edition: 109-115.
  • Browning, R.F. 1972. A record of the freshwater nemertean, Prostoma rubrum, in Wisconsin. Transactions of the Wisconsin Academy of Science, Arts & Letters 60: 179-180. [Available online]
  • Coe, W.R. 1959. Nemertea. [in] W.T. Edmondson (ed.). Ward & Whipple Fresh-Water Biology, 2nd edition: 366-367.

Web Pages

Site managed by Daniel L. Graf @ University of Wisconsin-Stevens Point